

Revised on Jan 2025

SQL BASICS WITH THE SMALLBANKDB
STEFANO GRAZIOLI & MIKE MORRIS

This handout covers the most important SQL statements. The examples provided throughout are

based on the SmallBank database.

Instructions on how to connect to the database will be distributed separately.

1. SINGLE TABLE QUERIES

• Tables and columns have short and full names. The full name is in the form

schemaName.tableName.columnName. For example

sg6m.LOAN.rate

Depending on how the defaults are set, sometimes you can skip the schema name and/or

the table name and just write

rate

 If there is the possibility of confusion, a fuller name is required.

SELECTING DATA FROM A TABLE

1) Choosing all fields (columns)

SELECT *

FROM table_name;

SELECT *

FROM Customer;

• The ; at the end of the query is optional in most DBMS implementations.

2) Choosing a selected list of fields (columns)

SELECT column_name [, column_name, …]

FROM table_name;

SELECT f_name, l_name, date_of_birth

FROM Customer;

2

• The order in which you list the columns affects how they are presented in the resulting output.

• Items within [] are optional.

3) Temporarily renaming columns in query results

SELECT column_name AS ‘column heading’ [, column_name AS

‘column_heading’]

FROM table_name;

Example:

SELECT f_name as ‘Customer Name’

FROM Customer;

4) Formatting results

SELECT format(date_due, 'd'), format(principal, 'C2')

FROM loan

ORDER BY date_due;

• Google ‘transact-SQL format’ to find more formatting commands

5) Including calculated columns in the results

SELECT date_due, rate, principal, rate * principal

FROM loan;

• If necessary, use parentheses to clarify the order of precedence in a computation, as in

a * (b+c)

6) Eliminating duplicate query results with DISTINCT

If you use the keyword distinct after the keyword SELECT, you will only get unique rows. Example:

SELECT rate

FROM Loan;

VS.

SELECT DISTINCT rate

FROM Loan;

3

7) Selecting rows: the WHERE clause

SELECT Select_list

FROM table

WHERE search_conditions;

Example:

SELECT *

FROM Customer

WHERE f_name = ‘Carl’;

• In SQL, text is delimited by single quotes, as in ‘Carl’

8) Selecting only the first n rows: TOP

SELECT TOP n Select_list

FROM table

WHERE search_conditions;

Example:

SELECT TOP 15 *

FROM Customer;

AVAILABLE SEARCH CONDITIONS OPERATORS

Comparison operators (=, <, >, !=. <>, <= ,>=)

SELECT * FROM loan

WHERE principal > 100000;

• Ranges (between and not between; inclusive of the end values)

SELECT * FROM loan

WHERE rate BETWEEN 7.5 AND 8.5;

• Lists (in and not in)

SELECT *

FROM Customer

WHERE city IN (‘Charlottesville’, ‘Roanoke’, ‘Lexington’);

• Character matches (like and not like)

SELECT f_name, l_name

4

FROM Customer

WHERE l_name LIKE ‘Fos%’;

SELECT f_name, l_name

FROM Customer

WHERE l_name LIKE ‘_oster’;

• “%” (matches any string of zero or more characters) and “_” (matches any one character). In

addition to those, brackets can be used to include either ranges or sets of characters.

• If you are not using the wildcards “%” or “_”, you should use =, rather than LIKE. It is better

and faster.

• Combinations of previous options using logical operators and, or, and not are possible:

SELECT f_name, l_name

FROM Customer

WHERE l_name LIKE ‘Fos%’ AND City NOT IN

(‘Charlottesville’, ‘Richmond’);

SUMMARIZING, GROUPING, AND SORTING QUERY RESULTS

1) Aggregate functions

• Types of aggregate functions: sum, avg, count, count(*), max, min

SELECT SUM (principal) FROM loan;

SELECT AVG (rate) FROM loan;

SELECT MIN(rate), MAX(rate), COUNT(rate)

FROM loan;

• The where clause can be used to define the set of rows to which the aggregate functions

apply

SELECT AVG (principal)

FROM loan

WHERE rate > 8.5;

• Difference between count and count(*): count returns the number of non-null values in a

specific column, whereas count(*) returns the number of rows.

SELECT COUNT(*) FROM customers;

SELECT COUNT(city) FROM customers;

5

• The keyword distinct can be used with sum, avg, and count to eliminate duplicate values

before making calculations. Distinct appears inside the parenthesis and before the column

name.

SELECT COUNT(DISTINCT city) FROM customers;

2) Using aggregate functions with groupings

• The group by clause can be used to organize a table into groups and get results separately for

each group.

• If you use aggregate functions in a SELECT query (e.g., SUM, AVG), only columns that appear

in the ‘Group By’ can be visualized with the aggregations.

SELECT rate, AVG(principal)

FROM loan

GROUP BY rate;

• The where clause can be used in a statement with group by. Only those rows that satisfy the

condition will be included in the grouping.

SELECT rate, AVG(principal)

FROM loan

WHERE principal > 50000000

GROUP BY rate;

• The types of groups included in the answer set can be limited with the having keyword.

Having sets conditions for groups in the same way where sets conditions for individual rows.

Aggregate functions can be used in a having clause.

SELECT rate, AVG(principal)

FROM loan

GROUP BY rate

HAVING AVG(principal) > 50000000;

3) Sorting query results with the order by clause

• An order by clause is used to request the results of data retrieval in either ascending (ASC,

which is the default) or descending (DESC) order by one or several columns

SELECT *

FROM loan

ORDER BY rate;

• Multiple sorts are possible

Select top 50 PERCENT lo.lo_id, lo.f_name, lo.l_name,

format (sum(rate/100*principal), 'C') as "Total interest"

6

from LOAN l, LOAN_OFFICER lo

where lo.lo_id = l.lo_id

group by lo.lo_id, lo.f_name, lo.l_name

order by sum(rate/100*principal) DESC

2. MULTIPLE TABLE QUERIES

SELECTING DATA FROM MULTIPLE TABLES: RELATIONAL JOINS

• Relational joins are SQL commands that combine data from multiple tables

• A “join” combinines the data in two tables by using the values in one column in the first table

and matching them with the values of another column in the second table. In the most

common case, a join matches a foreign key in one table and the primary key in another.

• Queries that include multiple joins are possible. These queries “hop” from one table to the

next, to the next, to the next.

1) Joining tables using a foreign key/primary key combination

SELECT l_id, principal, date_due, loan_officer.lo_id,

l_name

FROM loan, loan_officer

WHERE loan.lo_id = loan_officer.lo_id;

• Table name qualifiers (loan and loan_officer in the example above) are used when a column

name is not unique and we must clarify which column we are referring to. The format is

tableName.attributeName

• The where clause restricts the entries to those where the join condition is true.

• If the where clause is (accidentally) omitted, SQL returns a result that contains the “Cartesian

product” of the tables, i.e., all possible combinations of all the rows from all the tables. Thus,

if the loan_officer table contained 30 entries and the loan table contained 100 entries, the

Cartesian product consists of (30x100=) 3,000 entries. This is very rarely what you intended.

Bottom line: remember to include the where clause!

• The column set to be displayed can come from either one of the tables, or from both.

• There are several styles to write joins. You might be familiar with a different one. That is ok.

Feel free to use the one that you prefer.

7

2) Alternative syntax

SELECT l_id, principal, date_due, loan_officer.lo_id,

l_name

FROM loan

INNER JOIN loan_officer ON

loan.lo_id = loan_officer.lo_id;

• INNER JOIN produce the same resutl as the previous query.

3) All records from the ‘left’ Table, even if some do not match the other Table

SELECT l_id, principal, date_due, loan_officer.lo_id,

l_name

FROM loan

LEFT JOIN loan_officer ON

loan.lo_id = loan_officer.lo_id;

• Which table is the ‘left’ table is arbitrary. You pick it. It is the one that we think of as

‘anchoring’ the join. The one we start from.

• LEFT JOIN includes in the results the records from the left table even if they have no match in

the other table. LEFT OUTER JOIN produce the same result.

4) All records from both Tables, even if some do not match the other table

SELECT l_id, principal, date_due, loan_officer.lo_id,

l_name

FROM loan

FULL JOIN loan_officer ON

loan.lo_id = loan_officer.lo_id;

• FULL JOIN includes in the results the records from the both tables even if they have no match

in the other table.

5) Adding elements to the where clause

SELECT l_id, principal, date_due, loan_officer.lo_id,

l_name

FROM loan, loan_officer

WHERE loan.lo_id = loan_officer.lo_id

AND principal > 10000000;

8

SELECT l_id, principal, date_due, loan_officer.lo_id,

l_name

FROM loan

LEFT JOIN loan_officer ON

loan.lo_id = loan_officer.lo_id

WHERE principal > 10000000;

• Any combination of logical operators can be used to add conditions in the where clause

6) Joining three or more tables

• Joins are not limited to two tables; however, you will seldom see queries with more than 6 or

7 tables joined together. “Normal” is 2-4 tables. Here is an example with 4 tables.

SELECT customer.f_name, customer.l_name

FROM loan_officer, loan, customer_in_loan, customer

WHERE loan_officer.l_name = 'Romani'

AND loan_officer.lo_id = loan.lo_id

AND loan.l_id = customer_in_loan.l_id

AND customer_in_loan.c_id = customer.c_id;

• The columns used to join the tables (order number and product number above) may be

included in the select statement but do not have to be.

• What does this query compute? Make sure that you understand.

NESTED QUERIES

• It is possible to feed the result of a query directly into another query.

SELECT *

FROM loan

WHERE principal > (SELECT avg(principal)

 FROM LOAN);

UNION

• It is possible to append the results of two queries if the columns are compatible.

• To simplify, Joins add columns to a table, while Unions add rows to a table.

SELECT l.l_id, l.principal

FROM LOAN l

WHERE principal < 50000

UNION

SELECT l.l_id, l.principal

9

FROM LOAN l

WHERE principal > 300000

• This query may have been written using WHERE …. OR. It is written this way to demonstrate

how to use UNION.

• The queries that are appended through UNON can contain Order By only once, at the end

3. INSERTING, UPDATING and DELETING rows

INSERTING A NEW ROW INTO A TABLE

INSERT INTO table_name (column1, column2, column3…)

VALUES (value1, value2, value3, …)

• If the order of the values is the same as the order of the columns in the table, the column

specification can be omitted (see example below)

• Strings are delimited by single quotes

• You may need permission from the sys admin to insert rows in a table.

INSERT INTO Customer

VALUES (2323, ‘John’, ‘Smith’, ‘Cville’, ‘VA’)

Or

INSERT INTO Customer (f_name, l_name, c_id, state, city)

VALUES (‘John’, ‘Smith’, 2323, ‘VA’, ‘Cville’)

• Inserting a duplicated primary key will give you an error.

UPDATING ONE OR MORE ROW IN A TABLE

UPDATE table_name

SET column = value

WHERE condition

• Depending on the condition, one or more (or none) rows will be changed

• Careful with UPDATE! There is no ‘undo’

UPDATE Customer

SET f_name = ‘Jane’

WHERE c_id = 2323

10

UPDATE Customer

SET city = ‘Charlottesville’

WHERE city = ‘Cville’

DELETING ONE OR MORE ROW IN A TABLE

DELETE FROM table_name

WHERE condition

• Depending on the condition, one or more (or none) rows will be changed

• Careful with DELETE! There is no ‘undo’ and if you forget to specify the condition, the whole

table will be cleared.

DELETE FROM Customer

WHERE c_id = 2323

• The next example deletes multiple rows. If you forget to specify the condition, the whole table

will be cleared. Again, there is no ‘undo’.

DELETE FROM Customer

WHERE city = ‘Cville’

